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Results from experiments on wave interaction with a rigid plate are reported. The
plate is projected from one of the sidewalls of the basin. The sidewall acts as a plane
of symmetry, thereby doubling the widths of the plate and of the basin. The tests
are carried out in regular waves of varying periods and steepnesses. At wavelengths
comparable with the width of the plate, strong run-ups are observed at the plate–
wall intersection, increasing with the wave steepness. These run-ups take many wave
cycles to develop, with no steady state being reached in some cases. It is advocated
that these phenomena result from third-order interactions between the incident and
reflected wave fields, over a wide area on the weather side of the plate. A theoretical
model is proposed, based on tertiary wave interaction. A parabolic equation is derived
that describes the transformation of the incoming waves through their interaction
with the reflected wave field. A steady-state solution is obtained through iterations.
Results from the theoretical model are compared with the experimental data, with
good agreement.

1. Introduction
Wave loads upon large bodies are nowadays routinely computed with so-called

diffraction-radiation codes, which have reached an industrial stage. Being based upon
linearized potential flow theory, these codes only yield the fundamental components
of the wave loads and wave response, in the form of Response Amplitude Operators
(RAOs). It is usually found from model tests or measurements at sea that the
RAOs (as derived through spectral analysis of the records) are not sensitive to wave
steepness. Nonlinear effects most often take the form of sub- and super-harmonic
components (in the wave frequencies), the most widely known and studied being the
slow-drift and springing forces which are of second-order in the wave steepness (e.g.
see Molin 1994).

A particular situation where the RAOs seem to vary with wave steepness is the case
of a ship or barge in beam seas, at zero forward speed. Large free-surface elevations,
known as ‘run-up’, can sometimes be seen at midship, in complete disagreement with
the predictions of linearized potential flow codes. These run-up effects depend very
much upon the steepness of the incoming waves.

An example is provided by the time traces shown in figure 1. They relate to
a large rectangular barge model (length 5 m, width 1.2 m, draft 0.24 m) tested in
the experimental facilities of Cehipar (el Pardo, Spain). The irregular sea-state (of
Pierson–Moskowitz type) produced has a significant wave height of 0.15 m and a peak
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Figure 1. Model tests on a barge model in irregular beam seas. Time series of the relative
free-surface elevation at midship (‘Wave 1/2’), at one quarter length (‘Wave 1/4’) and away
from the barge model (‘Wave’). HS = 0.15 m, Tp = 1.6 s, γ = 1.

period of 1.6 s, meaning a steepness HS/LP = HS/(1.56 T 2
P ) less than 4 %. Figure 1

shows time series of the free-surface elevation away from the barge, that is the
incoming waves (with some contamination from the radiated and diffracted wave
systems), and of the relative free-surface elevations as measured with two gauges
attached to the barge hull, on the weather side. The first gauge is located at midship
(‘Wave 1/2’ in the figure), the second one at mid-distance from midship to the bow
(‘Wave 1/4’). It can be seen that the crest to trough values of the relative elevations
at midship are about twice the values at a quarter length. Linear calculations (not
shown) give quasi-identical RAO values at the two locations. What can also be seen in
the figure, and will be made clear further on, is that the relative elevation at midship
is lagging in time behind the quarter length one.

A view of the run-up effect, as photographed during another experimental campaign
in the experimental facilities of BGO-First, at la Seyne sur mer, is provided in figure 2.

It is advocated in this paper that these phenomena result from tertiary (‘third-
order’) interactions, between the incoming wave system and the reflected wave system
from the structure, taking place over a wide area on its weather side. This statement is
based upon thorough analysis of dedicated model tests and upon a theoretical model.

The experiments, described in § 2, consisted in submitting a vertical plate to regular
waves of varying wavelengths and steepnesses. The instrumentation consisted of wave
gauges along the plate and in between the plate and the wavemakers. A striking
feature of these tests is the transient character of the time series of the free-surface
elevations along the plate: their amplitudes vary slowly in time, at rates that depend
on the square of the wave steepness. They also slowly lag in time behind the reference
incoming waves, at rates that, again, depend on the square of the steepness. Large
run-up effects are obtained over a wide range of wavelengths.
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Figure 2. Run-up on a barge model at BGO-First.

The theoretical model is described in § 3. It is approximate in that the reflected
wave system by the plate is locally idealized as a plane wave. Use is then made of
existing theory on tertiary plane wave interaction (Longuet-Higgins & Phillips 1962)
to derive the local modification of the complex amplitude of the incoming wave,
which obeys a parabolic equation (similar to the parabolic approximation of the mild
slope equation). An iterative scheme is proposed to update successively the incoming
and diffracted wave fields.

Comparisons between experiments and calculations are rendered difficult by the fact
that the theoretical problem is solved in the frequency domain, expressing a steady-
state solution, whereas no steady state was reached in many experimental tests,
because of the long transient character of the observed phenomena: the exploitable
part of the records is limited by the multiple wave reflections in between the plate
and the wavemakers. In the cases where comparisons are possible, a good agreement
is obtained.

2. Experimental results
2.1. Test set-up

The tests took place in the BGO-First offshore wave tank, which has a width of 16 m
and a length of about 30 m from the wavemakers to the beach. The false bottom was
lowered to a depth of 3 m.

The model consisted of a rigid plate, attached to one of the sidewalls. The width
of the plate was 1.2 m, its thickness 5 cm and its height 2 m, of which 1.5 m were
immersed. By geometric symmetry, the set-up was therefore equivalent to a plate
2.4 m wide in the middle of a basin 32 m wide. The plate was located 19.3 m from the
wavemakers.
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Figure 3. Experimental set-up.

The instrumentation consisted of wave gauges. Six capacitive gauges were set along
the plate, on the weather side, at distances from the wall of 10 cm (gauge O6), 20 cm
(O5), 40 cm (O4), 60 cm (O3), 80 cm (O2) and 1.0 m (O1). A seventh one (O7) was
located on the lee side, 13 cm from the wall.

Nine resistive gauges were located in between the wavemakers and the plate, as
shown in figure 3. A tenth one (S4) was located at the same x-coordinate as the
capacitive gauges, away from the plate, 2m from the opposite wall. It provided the
more or less undisturbed incident-wave elevation.

The tests were performed in regular waves only, at wave periods of 0.88, 0.98,
1.07, 1.16, 1.24, 1.32 and 1.39 s. This means, for small-amplitude waves, wavelengths
(L) of 1.2, 1.5, 1.8, 2.1, 2.4, 2.7 and 3.0 m. At each wave period, five different wave
heights were produced, with steepnesses H/L equal to 2, 3, 4, 5 and 6 % (H being
the crest-to-trough value). The waves were calibrated prior to installing the plate
and the reflection coefficients from the beach were derived from wave measurements
(with 5 gauges along the centreline). The reflection coefficients were always less
than 8 %.

In spite of the limited size of the plate as compared to the width of the basin, the
reflected wave field is strong and is re-reflected by the wavemakers, back to the plate.
As a consequence, the exploitable duration of the measurements is reduced to twice
the distance l, from the plate to the wavemakers, divided by the group velocity.

2.2. Illustrative results

We first consider the case of a period of 0.88 s (wavelength of 1.2 m) and a steepness
H/L of 4 %. Figure 4 shows time traces of the free-surface elevations away from the
plate (gauge S4) and along the plate (gauges O1 to O6). They are shown from the
time the wavefront reaches the plate until re-reflected waves by the wavemakers start
to interfere. This means about 65 cycles. All signals are normalized by the amplitude
AI of the incoming waves (so the top signal oscillates roughly between −1 and +1).

It can be observed that the amplitudes of all elevations measured along the plate
slowly evolve in time, with no steady state being apparently reached, even after
60 cycles. At the two gauges by the outer end of the plate, the signals slowly decrease
in time, whereas at the three gauges on the wall side, they slowly increase in time. By



Role of tertiary wave interactions in wave–body problems 327

0 10 20 30 40 50 60
–5

0

5
η

I/A
I

Time (s)

0 10 20 30 40 50 60
–5

0

5

η
1/

A
I

0 10 20 30 40 50 60
–5

0

5

η
2/

A
I

0 10 20 30 40 50 60
–5

0

5

η
3/

A
I

0 10 20 30 40 50 60
–5

0

5

η
4/

A
I

0 10 20 30 40 50 60
–5

0

5

η
5/

A
I

0 10 20 30 40 50 60
–5

0

5

η
6/

A
I

(a)

(b)

(c)

(d )

(e)

( f )

( g)

Figure 4. Wave period: 0.88 s; steepness H/L: 4 %. Time series of the normalized
free-surface elevations (a) away from and (b–g) along the plate, from gauge O1 to gauge O6.

the end of the time traces, the amplitude of the free-surface motion by the plate–wall
corner is about 4 times the amplitude of the incoming waves. Linear calculations give
an RAO of about 1.75 (see figure 15).
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Figure 5. Associated phase lags.

Figure 5 complements figure 4 by showing the phase differences between the eleva-
tions measured along the plate and the incoming wave elevation away from the plate.
They are obtained by Fourier analysis of the time series over sliding windows, three
cycles long. It can be observed that the phase angles slowly decrease in time, with a
value of −2 radians being reached at gauge O6 at the end of the record. This means
that the free-surface elevation at the plate–wall corner is lagging behind that of the
reference by about one-third of a wave period.

Next, still at the 0.88 s period, we consider the effect of varying the wave steepness.
Figure 6 gives the time series of the free-surface elevation at gauge O6 (again
normalized by the amplitude AI of the incoming waves), for the five values of the
steepness H/L. At the lowest value (2 %) a steady state is apparently quickly reached.
At greater steepnesses again the amplitudes slowly increase in time, at rates that
depend on the steepness: the greater the steepness the higher the rate of increase.
At 5 % steepness, a steady state is apparently reached after about 20 cycles, with
maximum elevations about 5 times the incoming-wave amplitude. At the greatest
steepness (6 %), it looks as if no steady state is reached after the initial ramp that
lasts for about 15 cycles. What actually happens is that the standing-wave pattern, in
front of the plate, becomes so steep that the crests break.

Figure 7 complements figure 6 by showing the associated phase lags. Again they
decrease in time, at rates that depend on the wave steepness, and seem to stabilize at
−2.5 radians at the two greatest steepnesses.

Figure 8 shows the same phase lags with a stretched time scale, t being multiplied
by the square of the steepness H/L. As a result, all the curves more or less coalesce
together, at least during the initial phase. This shows that the rate of decrease of the
phase lag is proportional to the square of the wave steepness.

Similarly, figure 9 shows the time evolution of the RAO of the free-surface elevation
at gauge O6 (as obtained from the sliding window Fourier analysis) with the stretched
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Figure 6. Time series of the normalized free-surface elevation at the plate–wall corner.
Wave period: 0.88 s. Steepnesses (a) H/L = 2 %, (b) 3 %, (c) 4 %, (d) 5 %, (e) 6 %.

time scale t × (H/L)2. At the four greatest steepnesses, the slope of the initial part of
the curves is the same, showing that the rate of increase of the RAO is also related
to the square of the steepness.
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Figure 7. Phase lags at the plate–wall corner. T = 0.88 s. Steepnesses H/L from 2 to 6 %.
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Figure 8. As figure 7 with stretched time scale.

These features are not limited to particular values of the wave period. They were
observed at all periods with the most marked effects at 0.98 and 1.07 s. As an
illustration, figures 10, 11 and 12 show similar results to figures 6, 8 and 9, for the
0.98 s wave period. At 6 % steepness, breaking is also observed, with a noticeable
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Figure 9. T = 0.88 s. Time evolution of the RAO at gauge O6 (stretched time scale).

period tripling effect (see figure 10e) as previously reported by Jiang, Perlin & Schultz
(1998) and Longuet-Higgins & Drazen (2002).

2.3. Interpretation

An intuitive interpretation of the observed phenomena is that the reflected wave
system acts as a shoal, slowing down the incoming waves which refract and diffract
as they progress toward the plate. In the case of plane waves, it has been known
for a long time (Longuet-Higgins & Phillips 1962) that tertiary interactions lead to
mutual modifications of the phase velocities. The possible implications of this effect
for wave–body problems have apparently never been considered. In the following
section, we present a simple theoretical model where tertiary interactions are taken
into account.

3. Theoretical model
3.1. Tertiary interaction between plane waves

For the sake of simplicity we restrict ourselves to two wave systems of identical fre-
quencies, in infinite water-depth (which was the case for the tests). Longuet-Higgins &
Phillips (1962) tackled the case of two different frequencies, in infinite water-depth (see
also Tanaka 2002). Hogan, Gruman & Stiassnie (1988) considered the most general
case of different frequencies in finite water-depth (also accounting for capillary effects).

We assume one wave component (with amplitude A1) to propagate along the x-axis
(the incoming waves) and the other one (with amplitude A2) to propagate at an angle
β . At first-order of approximation in the wave steepness, the free-surface elevation is
written

η(1) = A1 cos(k x − ω t) + A2 cos(k x cosβ + k y sin β − ω t), (3.1)
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Figure 10. Time series of the normalized free-surface elevation at the plate–wall corner.
Wave period: 0.98 s. Steepnesses (a) H/L = 2 %, (b) 3 %, (c) 4 %, (d) 5 %, (e) 6 %.

while the (linearized) velocity potential is

Φ (1) =
A1 g

ω
ek z sin(k x − ω t) +

A2 g

ω
ek z sin(k x cos β + k y sin β − ω t), (3.2)

the wavenumber k and the frequency ω being linked by the deep-water dispersion
equation ω2 = g k.
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Figure 11. Time evolution of the phase lag (stretched time scale). Wave period: 0.98 s.
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The third-order analysis of Longuet-Higgins & Phillips (1962) shows that the wave-
number of the first component is modified by a quantity k

(2)
1 given by

k
(2)
1 = k3 A2

2 f (β) + 1
2
k3 A2

1 f (0) = k3 A2
2 f (β) − k3 A2

1, (3.3)
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where the function f (β) can be obtained from equation (2.8) of Longuet-Higgins &
Phillips (1962) (with a factor 2 correction in the last line, see, e.g. Tanaka 2002) as

f (β) = −
{

(1 − cos β)
√

2 + 2 cos β + 2 cos β + 1
2
sin2 β

+
2 (1 − cos β)√
2 + 2 cos β − 4

(1 + cosβ +
√

2 + 2 cosβ)

}
. (3.4)

The function f (β) is shown in figure 13.
In the case of a single wave (A2 ≡ 0), we obtain k

(2)
1 = −k3 A2

1 which is the well-
known wavenumber correction that arises in Stokes’ third-order regular wave model:
the wavelength increases. In a two-wave system, cross-interaction tends to decrease
the wavelengths when the angle β is larger than 92◦.

3.2. Resolution of the linearized diffraction problem for the plate

Because of the particular geometry of the experimental structure, the diffraction
problem can be solved semi-analytically. Making reference to figure 14, we divide the
fluid domain into two sub-domains, left and right of the plate, which are semi-infinite
strips bounded by the tank walls. The incoming waves propagate from left to right,
with amplitude AI .

The problem is solved in the frequency domain:

Φ(x, y, z, t)=Re {ϕ(x, y, z) e−i ω t}.
In the left-hand-side sub-domain, the velocity potential can be expressed as

ϕ1 =
−i AIg

ω
ekz

{
ei kx +

N∑
n=0

Bn e−i
√

k2−λ2
n x cos λny +

∞∑
n=N+1

Bn e
√

λ2
n−k2 x cos λny

}
,

(3.5)
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and, in the right-hand-side sub-domain,

ϕ2 =
−i AIg

ω
ekz

{
N∑

n=0

Cn ei
√

k2−λ2
n x cos λny +

∞∑
n=N+1

Cn e−
√

λ2
n−k2 x cos λny

}
. (3.6)

Here, λn = n π/b and N is the largest integer n such that k is larger than λn. For
n � N , the modes are progressive, for n>N , they are evanescent.

Equations (3.5) and (3.6) mean that the transmitted and reflected waves propagate
to infinity without reflections from the beach or wavemakers.

The unknown coefficients Bn and Cn are determined by matching ϕ1 and ϕ2 (and
their x derivatives) on the common boundary x = 0 for d < y < b and by setting
the no-flow condition on the plate. This gives a linear system that is solved with a
standard Gauss routine.

Figure 15 shows the RAOs of the free-surface elevation along the plate, for the
different wavelengths of the experimental tests. At the shortest wavelengths (1.2 m to
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Figure 16. Three-dimensional view of the reflected wave field at a wavelength of 1.2m.

1.8 m), the loci of the maximum elevation are not at the wall, but between the wall
and the edge. At longer wavelengths, the RAOs are very similar, with a maximum
value, at the wall, around 2.5.

Figure 16 is a bird’s-eye view of the reflected wave field, at a wavelength of 1.2 m,
in the immediate vicinity of the plate.

3.3. Determination of the equivalent plane wave

In order to be able to use Longuet-Higgins & Phillips’ result for the modification
of the wavenumber (equation (3.3)), we idealize, locally, the reflected wave system as
a plane wave. This means that we identify, in the vicinity of the considered point,
(x0, y0), the two expressions

AI

N∑
n=0

Bn e−i
√

k2−λ2
n x cos λny, AR ei k [(x−x0) cos β+(y−y0) sin β]+i θ . (3.7)

This is achieved by equalizing the moduli (which gives AR) and by taking the angle
β as the direction of steepest variation of the first expression.

Figures 17 and 18 show the obtained amplitudes AR (normalized by AI ) and angles
β at different transversal cuts ahead of the plate (still at a wavelength of 1.2 m), over
the first 6 m of the basin (in the transverse direction). They exhibit some waviness,
which can be attributed to the confinement and some quasi-resonant transverse modes
coming into play. It can be observed that the reflection is very strong along the wall,
with normalized amplitudes AR/AI larger than 1.0 up to 4 wavelengths back.

3.4. Modifications of the incoming waves owing to tertiary interactions
with the reflected waves

We now proceed to quantify the effects of tertiary interactions between the two wave
systems. This means that we must allow for some space variation of the phase of the
incoming waves and, as a consequence of the spatial variation of the reflected waves,
of their amplitude as well.
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We take the velocity potential of the incoming waves under the form

ϕI =
−i A(ε2x, εy) g

ω
ei k (1−ε2) x e[k+ε2k

(2)
1 (ε2x,εy)] z, (3.8)

where the complex amplitude A is assumed to vary slowly in x and y, at a rate that
is related to the steepness ε = k AI . The rate of variation in x is taken to be of the
order ε2, which is what would occur in a pure plane wave situation. In y, it is taken
to be of order ε, as a result of the principle of least degeneracy. The same type of
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variation arises in the parabolic approximation of the mild-slope equation, with the
small coefficient ε being then related to the bottom slope (e.g. see Dingemans 1997).

It must be stressed here that the flow is still assumed to vary in time at the frequency
ω, that is, we look for a steady-state solution and assume that such a steady-state
solution exists.

The Laplace condition gives, to the order ε2:

2 i k Ax + Ayy + 2 k4 A2
I A + 2 kk

(2)
1 A= 0, (3.9)

or, from (3.3):

2 i k Ax + Ayy + 2 k4
[
A2

R f (β) + A2
I − ‖A‖2

]
A= 0, (3.10)

where AR(x, y) and β(x, y) are the (real) amplitude and direction of propagation of
the equivalent plane wave to the reflected field.

Taking

A= AI (1 + a), AR =AI aR, ε = k AI ,

(3.10) can be rewritten as

2 i k ax + ayy + 2 k2 ε2
[
a2

R f (β) + 1 − ‖1 + a‖2
]

a = −2 k2 ε2
[
a2

R f (β) + 1 − ‖1 + a‖2
]
.

(3.11)

This equation is integrated in x and y, starting from x = −l where it is assumed
that a(−l, y) = 0. The choice of the distance l is discussed in § 3.6.

Advantage is taken of the confined geometry to expand a(x, y) under the form

a(x, y) =

∞∑
n=0

an(x) cos λny, (3.12)

with λn = nπ/b, as previously. This ensures that the no-flow condition at the walls
y = 0 and y = b is fulfilled.

It follows that the coefficients an(x) satisfy

a′
m +

i λ2
m

2k
am − 2 i k ε2

(1 + δ0m) b

∞∑
n=0

[∫ b

0

[
a2

R f (β) + 1 − ‖1 + a‖2
]

cos λmy cos λny dy

]
an

=
2 i k ε2

(1 + δ0m) b

∫ b

0

[
a2

R f (β) + 1 − ‖1 + a‖2
]

cos λmy dy (3.13)

(δ0m being the Kronecker symbol),
or, under vectorial form:

a′(x) + M(x, a(x)) · a(x) = b(x, a(x)), (3.14)

where the matrix M and the vector b depend on a(x).
The x-integration is carried out according to the second-order implicit scheme

a′(x) � 3 a(x) − 4 a(x − 
x) + a(x − 2 
x)

2 
x
, (3.15)

yielding the linear system

[3 I + 2 
x M(x, a(x))] · a(x) = 2 
x b(x, a(x)) + 4 a(x − 
x) − a(x − 2 
x). (3.16)

This is solved iteratively, the matrix M and the vector b being updated at each
iteration (two iterations suffice in practice, starting from the values at x − 
x).
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Figures 19 and 20 show the amplitudes and phases obtained in the case of a
period of 0.88 s and a steepness H/L of 4% (k AI � 0.13). The calculations start
19.3 m ahead of the plate (the distance from the wavemakers to the plate), that is 16
wavelengths. The amplitudes and phases are given along transverse cuts at 8, 6, 4, 2
and 0 wavelengths from the plate.

3.5. New resolution of the diffraction problem

It is quite easy to solve again the diffraction problem with the modified incoming-
wave field. In the left-hand side of the domain (see figure 14) the velocity potential is
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now written

ϕ1 =
−i AI g

ω
ekz

∞∑
n=0

[(an + δn0) ei kx + Bn e−iαnx] cos λny, (3.17)

while in the right-hand side sub-domain it is taken under the same form as before:

ϕ2 =
−i AI g

ω
ekz

∞∑
n=0

Cn eiαnx cos λny. (3.18)

The diffraction problem being solved, we may return to the previous step of
calculating the modifications of the incoming waves, under tertiary interaction with
the updated reflected field. The diffraction problem can be solved again, etc., and this
process repeated until convergence is reached (if ever).

In figure 21 the evolution of the RAO of the free-surface elevation along the plate
is shown (still in the case of a wave period equal to 0.88 s and a steepness H/L of
4%). It can be seen that the point of maximum elevation, initially in y � 0.6 m, moves
to the wall. After a few iterations, convergence is reached with a value of the RAO,
at the wall, around 3.7 (more than twice the linear value).

In figure 22, we present analogous results to figure 19, at the end of the iterations.
As compared to this figure, it can be observed that the amplitude has increased by
the plate–wall intersection: it is now nearly twice the initial amplitude.

Similarly, in figure 23, the phase angles obtained after convergence are shown.
Referring to figure 20, it can be observed that the angles have increased (in absolute
values) and have become comparable with the experimental ones (see figure 5).

Finally, figure 24 gives a bird’s eye view of the incident wave field in the vicinity of
the plate. The shortening of the wavelength, and the increase of the amplitude along
the wall can clearly be seen.

Figure 25 gives the final RAOs obtained after convergence, still in the case of
a 0.88 s period, for steepnesses ranging from 2 to 6 %. To achieve convergence at
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the two highest steepnesses, it was necessary to introduce some relaxation into the
iterative scheme.

3.6. Sensitivity to the interaction distance

To produce the results shown in figures 19 to 25, we have integrated (3.10),
starting from x = −l = −19.3 m, with A(−l, y) = AI as the initial value. This abscissa
corresponds to the location of the wavemakers.

At 4 % steepness, we have repeated the calculations for different interaction lengths
l, ranging from twice to 64 times the wavelength L. The final RAOs obtained are
shown in figure 26. Quasi-identical curves are obtained at the longer lengths of 32 and
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Figure 25. RAOs of the free-surface elevation at different steepnesses. Period: 0.88 s.

64 wavelengths, with the same maximum value of 4.0 at the plate–wall intersection.
At 16 wavelengths (l = 19.3 m), slightly lower values are obtained. This suggests that
the plate was too close to the wavemakers for this particular wave period.

It must be pointed out here that the far-field behaviour of the reflected waves in
the basin has nothing to do with their far-field behaviour in the open ocean: in the
basin, because of the confinement in between the walls, the amplitude of the reflected
waves does not go to zero at infinity, but ends up spreading out more or less equally
over the width of the basin (for a large number of propagating modes). In an infinite
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Figure 27. Effect of varying the basin width. Period: 0.88 s, steepness H/L: 4 %,
integration length: 19.3m.

ocean, it decays as 1/
√

R, where R is the distance from the plate. This raises the
problem of confinement effects for the phenomena that we are studying here.

To check whether the basin width plays an important role, we carried out calcu-
lations, in the case l = 16L, for two other widths of 12 and 20 m. The results are shown
in figure 27, where it appears that the differences are very small. So the finite width
of the basin does not appear to be of much concern, at least in this particular case.

Figure 28 shows similar results to figure 26, in the case of a wave period of 1.24 s,
meaning a wavelength of 2.4 m, twice the previous value. The steepness H/L is kept
the same, that is 4 %. It can be seen that the RAOs coalesce together at interaction
lengths larger than some value in between 4 and 8 wavelengths, meaning a shorter
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Figure 29. Three-dimensional view of the reflected wave field at a wavelength of 2.4m.

distance than in the previous case. This is because the reflected wave system is much
less focused along the longitudinal wall (see figure 29). Correlatively, the number of
iterations necessary to achieve convergence decreases.

4. Further experimental results and comparison with calculated values
In this section we present further experimental results, interpret them and make

comparisons with our simplified model.
Our understanding of the observed phenomena is the following: the wavemakers

being activated, the incoming wave system propagates in the basin, at the group
velocity CG, with a modulation and steepening of the wavefront (according to theory),
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and starts interacting with the plate. A reflected wave system is produced that
propagates back toward the wavemakers, also at the group velocity. The two wave
systems interact over an area increasing in time at the rate CG and modify each other.
This means that the incoming waves are undergoing continuous evolution, until a
state of equilibrium is eventually reached, if there is one. Unfortunately, in the basin,
time is limited as the reflected waves re-reflect on the wavemakers, meaning that the
exploitable part of the tests is less than twice the distance, from the plate to the
wavemakers, divided by the group velocity, as argued before.

4.1. Rate of change of phase lag

The quasi-linear time variation of the phase angle of the free-surface elevations, at
the plate, can be related to the linear rate of increase of the interaction area, as can be
easily seen in a two-dimensional situation: assuming, for the sake of simplicity, that
the incoming and reflected wave systems propagate as step functions, the free-surface
elevation, in between the wavemakers and the plate, is given by

η(x, t) = AI H (CG t − x) cos(kx − ωt + θI )+AR H (CG t + x) cos(kx +ωt + θR), (4.1)

with H the Heaviside function and t = 0 the instant when the incoming waves reach
the plate.

Cross-interaction between the incoming and reflected waves results in a phase delay
of the incoming waves, at the plate, given by

ψ(t) = −2 k3 A2
R

∫ 0

−CG t

dx = −k2 A2
R ω t. (4.2)

Assuming AR ∼ AI , equation (4.2) gives L2/H 2 dψ/dt = −π2 ω, that is −70 rad s−1

for the shortest wave period of 0.88 s, while figure 8 shows a slope of about −40 rad s−1.
The discrepancy can presumably be attributed to three-dimensional effects and to the
modulations of the wavefronts.

4.2. Modifications of the incoming wave amplitude ahead of the plate

To investigate whether the amplitude of the incoming waves does change prior
to reaching the plate, we analyzed the time records of the free-surface elevations
measured at gauges S5 to S10, ahead of the plate. We considered them in pairs,
that is (S8–S5), (S9–S6) and (S10–S7), and used a two-gauge method to separate
incoming and reflected waves, assumed both to propagate in the x-direction and to
have constant amplitudes from one gauge to the other (the separation distance being
50 cm). To properly separate both components, it turned out to be necessary to take
account of the modifications of the wave numbers, due to self and cross-interactions.
That is the free-surface elevation is written

η(x, y, t) = AI cos(kI x − ω t + θI ) + AR cos(kR x + ω t + θR), (4.3)

where

kI = k + 2 k3 A2
R − k3 A2

I , (4.4)

kR = k + 2 k3 A2
I − k3 A2

R, (4.5)

meaning that the wavenumbers depend (weakly) on the unknown amplitudes AI and
AR . This difficulty is overcome through an iterative scheme.

Results are given in figure 30, again in the case T =0.88 s, H/L = 4 %. It shows
the time evolution of the amplitude of the incoming waves, at the three locations, as
determined over sliding windows three wave periods long. The amplitude of the waves
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away from the plate, at gauge S4, is also shown. A strong increase of the incoming
wave amplitude, in between gauges S8 and S5 (at 2 m from the plate), can clearly
be seen, up to 1.5 times the reference value given by S4. The ratio then decreases
to around 1.4, in fair agreement with the value (1.35) provided in figure 22 at 2.4 m
(2 L) from the plate. The slight decrease in time of the incoming wave amplitude
in between gauges S10 and S7, 2.1 m away from the wall, can also be noticed, in
qualitative agreement with figure 22.

Figure 31 shows, for the same test, the time evolution of the amplitude of the
reflected waves, at the same locations. It should be noted that, in figures 30 and 31,
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the time reference is not the arrival of the wavefront at the plate but the beginning
of data acquisition.

4.3. Comparison between measured and calculated free-surface elevations
along the plate

As outlined before, the main difficulty in this comparison is associated with the fact
that our theoretical model expresses the steady-state solution, whereas in many tests
no steady state is apparently reached within the exploitable time window.

In figures 32 to 36 we present experimental and numerical RAOs of the free-surface
elevation along the plate, at wave periods of 0.88, 0.98, 1.07, 1.16 and 1.39 s. The
experimental RAOs are derived from the measured elevations over a time window
of three periods just before re-reflected waves reach the plate. They are drawn as
straight segments joining the values obtained at the gauges O1 to O6, therefore
starting at y = 0.1 m and ending at y = 1.0m. In each figure, the top part shows the
time evolution of the RAO at gauge O6 for the different steepnesses, as derived from
the experimental record.

As already mentioned, at 0.88 s wave period and 6 % steepness, the standing-wave
system quickly becomes too steep and begins to break, dissipating energy. This is
reflected in the time evolution of the RAO at gauge O6 (figure 32a) that drops down
after attaining values around 4.5. For this reason, no comparison can be made with
calculated values. Still at the 0.88 s period, it clearly appears in the same figure that
the 2, 3 and 4% curves have not reached horizontal asymptotes within the allowable
time window. As a result, it is difficult to make meaningful comparisons between
calculated and measured RAOs along the plate.

At the 0.98 s period (figure 33), breaking also occurs at 6 % steepness. At the lower
steepnesses, the gauge O6 RAOs seem to have reached steady values by the end of
the time traces and fair agreements are obtained between computed and measured
RAOs along the plate. Reasonably good agreements can also be seen at the other
wave periods. At the highest one (1.39 s), the run-up effect becomes much weaker, but
both experiments and calculations agree over a 35 % increase of the RAO peak over
linear calculations (at the highest steepness), which is far from negligible for air-gap
calculations.

Noticeable in some of the plots of the time evolution of the RAO at gauge O6 are
oscillations, particularly at the 1.16 s period (figure 35). They are also visible in figures
5 and 7 showing the time evolution of the phase lags, with the same period around
13 s whatever the steepness. Presumably they are associated with the first longitudinal
mode of the tank that becomes excited during the wave generation phase (Molin
2001).

5. Final comments
We believe that we have provided sufficient evidence that our interpretation of the

observed experimental phenomena is correct: the strong run-up effects are due to
tertiary interactions between the incoming waves and the reflected wave field, over a
wide area on the weather side of the plate. These interactions slow down the incoming
waves, like a shoal, and induce focusing toward the centre of the plate. Even though,
in the cases of ships and barges, these run-ups had been observed for a long time
(Pinkster, personal communication 2003), it looks as if no satisfactory explanation
has been given so far.
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Figure 32. (a) Time evolution of the RAO of the free-surface elevation at gauge O6.
(b) Measured and (c) calculated RAOs along the plate. Period: 0.88 s.
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Figure 33. As figure 32. Period: 0.98 s.
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Figure 34. As figure 32. Period: 1.07 s.
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Figure 35. As figure 32. Period: 1.16 s.
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Figure 36. As figure 32. Period: 1.39 s.
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We have proposed a theoretical model that seems to reflect the physics correctly.
However, it can be criticized in many respects:

(i) the plane wave approximation applied to the reflected wave field needs further
justification;

(ii) the hypothesis that the amplitude of the incoming waves varies slowly in the
transverse direction is not strictly fulfilled (see, for instance, figure 22);

(iii) modifications of the reflected wave system, through tertiary interactions with
the incoming one, are not considered;

(iv) the problem is solved in the frequency domain, on the basis that a steady-state
solution exists.

Concerning this last point, the model tests did not give evidence that steady states
were always attained. The main reason seems to be related to the fact that the
exploitable time window is limited by the multiple reflections in between the plate
and the wavemakers. At short wavelengths, where the interaction area extends far
away from the plate, the duration of the transients is too long for a steady state to
be attained within the allowable time window.

It would certainly be instructive to make comparisons with results from fully
nonlinear time domain numerical models. The numerical challenge is that a wide
domain must be covered; the shorter the wavelength (with regards to the size of the
body), the larger the computational domain must be. A promising route seems to
be the enhanced Boussinesq equations first proposed by Agnon, Madsen & Schäffer
(1999) and Madsen, Bingham & Liu (2002), and further developed by Fuhrman &
Bingham (2004). Preliminary results have already been obtained, with excellent
agreement with the experimental records (Bingham et al. 2004).

The practical implications of these findings are obvious for the survival of disabled
barges or ships, in beam seas. As a matter of fact, our first experience with this run-
up phenomenon was when doing model tests on the rolling motion of barges (from
which figure 1 has been taken). The barge model started shipping large amounts
of water and the test program had to be revised to milder sea-states. Associated
with these run-up and water-shipping effects are high local loads that are likely to
induce damage to the structure. This could have been a key mechanism in the loss
of some ships like the Prestige (Rainey, personal communication 2004). Other cases
of concern are multi-legged offshore structures, that have been known to suffer from
air-gap problems (e.g. see Swan, Taylor & van Langen 1997, or Mavrakos et al.
2004), and coastal structures, such as breakwaters, or the planned GBS (gravity base
structures) for LNG storage and off-loading.

A lot more theoretical and numerical work remains to be done, such as tackling
the cases of finite depth, irregular waves and non-normal incidence. The theoretical
model that we have proposed can easily be extended to these issues.

The model tests at BGO-First were carried out within the Gis-Hydro organization,
with financial support from Conseil Général du Var. The analysis was done as part
of a CLAROM research project on ‘run-up’. Partners in the project are Principia RD,
Bureau Veritas, Doris Engineering, ESIM, Saipem SA and Sogreah. Preliminary results
were given at the Eighteenth International Workshop on Water Waves and Floating
Bodies (Molin et al. 2003) and at the Cinquième Rencontre Hydrodynamique Marine
2004 (Molin 2004). Further results from the experiments can be found in Molin et al.
2004.



354 B. Molin, F. Remy, O. Kimmoun and E. Jamois

REFERENCES

Agnon, Y., Madsen, P. A. & Schäffer, H. A. 1999 A new approach to high-order Boussinesq
models. J. Fluid Mech. 399, 319–333.

Bingham, H. B., Fuhrman, D. R., Jamois, E. & Kimmoun, O. 2004 Nonlinear wave interaction with
bottom-mounted structures by a high-order Boussinesq method. In Proc. 19th Intl Workshop
Water Waves and Floating Bodies, Cortona, Italy.

Dingemans, M. W. 1997 Water Wave Propagation over Uneven Bottoms. Part 1 – Linear Wave
Propagation. World Scientific.

Fuhrman, D. R. & Bingham, H. B. 2004 Numerical solutions of fully non-linear and highly
dispersive Boussinesq equations in two horizontal dimensions. Intl J. Numer. Meth. Fluids 44,
231–255.

Hogan, S. J., Gruman, I. & Stiassnie, M. 1988 On the changes in phase speed of one train of
water waves in the presence of another. J. Fluid Mech. 192, 97–114.

Jiang, L., Perlin, M. & Schultz, W. W. 1998 Period tripling and energy dissipation of breaking
standing waves. J. Fluid Mech. 369, 273–299.

Longuet-Higgins, M. S. & Drazen, D. A. 2002 On steep gravity waves meeting a vertical wall: a
triple instability. J. Fluid Mech. 466, 305–318.

Longuet-Higgins, M. S. & Phillips, O. M. 1962 Phase velocity effects in tertiary wave interactions.
J. Fluid Mech. 12, 333–336.

Madsen, P. A., Bingham, H. B. & Liu, H. 2002 A new Boussinesq method for fully nonlinear waves
from shallow to deep water. J. Fluid Mech. 462, 1–30.

Mavrakos, S. A., Chatjigeorgiou, I. K., Grigoropoulos, G. & Maron, A. 2004 Scale experiments
for the measurement of motions and wave run-up on a TLP model, subjected to
monochromatic waves. In Proc. 14th Intl Offshore and Polar Engng Conf., Toulon, France,
Vol. 1, pp. 382–389.

Molin, B. 1994 Second-order hydrodynamics applied to moored structures. A state-of-the-art
survey. Ship Technol. Res. (Schiffstechnik) 41/2.

Molin, B. 2001 Numerical and physical wavetanks: making them fit. Ship Technol. Res.
(Schiffstechnik) 48/1.

Molin, B. 2004 Interactions vagues–vagues et interactions vagues–structure. In Actes de la Cinquième
Rencontre Hydrodynamique Marine. Casablanca (in French).

Molin, B., Remy, F. & Kimmoun, O. 2004 Experimental study of the non-linear wave interaction
with a vertical plate. In Proc. 14th Intl Offshore and Polar Engng Conf., Toulon, France,
Vol. 3, pp. 380–387.

Molin, B., Remy, F., Kimmoun, O. & Ferrant, P. 2003 Third-order interactions and wave run-up.
In Proc. 18th Intl Workshop Water Waves and Floating Bodies, Le Croisic, France.

Swan, C., Taylor, P. H. & van Langen, H. 1997 Observations of wave–structure interaction for a
multi-legged concrete platform. Appl. Ocean Res. 19, 309–327.

Tanaka, M. 2002 On the phase velocity effect of nonlinear interactions between surface gravity
waves. Phys. Fluids 14, 2109–2112.


